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Abstract 
Genetic programming tackles the issue of how to 

automatically create a working computer program for  a 
given problem from some initial problem statement. The 
goal is accomplished in genetic programming by 
genetically breeding a population of computer programs 
in terms of the principles of Darwinian natural selection 
of the fittest and genetic operations. In this paper, we 
describe a genetic programming system called GAPS. 
GAPS has the following features: (1) I t  implements the 
prototypical generational algorithm for  genetic 
programming with three improvements (the honor roll, 
improved termination criteria and the tree techniques for  
fitness evaluation). (2)  I t  includes an extensible language 
tailored to the needs of genetic programming. And (3)  it is 
a complete, standalone system that allows for  genetic 
programming tasks to be carried out without requiring 
other tools such as compilers. Preliminary results with 
GAPS have been satisfactory. 

1. Introduction 
Evolutionary computation refers to the use of 

evolutionary algorithms to solve difficult computational 
problems [3]. Two major approaches exist in the field of 
evolutionary computation: genetic algorithms (GA) and 
genetic programming (GP) [4,5,6,7]. One important 
difference between GA and GP lies in the representational 
formalisms for hypotheses: GA uses bit strings whereas 
GP uses computer programs. GP deals with the issue of 
how to automatically create a working computer program 
for a given problem from some initial problem statement. 
The goal of GP is accomplished by genetically breeding a 
population of computer programs in terms of the 
principles of Darwinian natural selection of the fittest and 
genetic operations [ 1,2,7-10,12-161, 

In this paper, we describe a complete, standalone 
system for GP called GAPS [ 1 1 3 .  Preliminary results with 
GAPS have been satisfactory. GAPS has the following 
features: 
(1) It implements the prototypical generational algorithm 

for GP with three improvements: the use of the honor 

roll for the top scorers throughout the entire 
evolution process, improved termination criteria and 
the tree techniques for fitness evaluation. 

(2) It has an extensible language tailored to the needs of 
genetic programming. The language can be used for 
creating the structures that GAPS manipulates, and 
for creating the “shell” programs to evaluate the 
fitness of the computer programs generated. It is 
extensible in that it allows new functions and 
subroutines to be dynamically defined and used. 

(3) It offers a complete, standalone development 
environment that allows for genetic programming 
tasks to be carried out without requiring other tools 
such as compilers. 

The rest of the paper is organized as follows. Section 2 
gives a brief overview of the main tasks and issues in GP. 
Discussion on GAPS is provided in Section 3. 
Performance issue on GAPS is briefly described in 
Section 4. Finally, Section 5 concludes the paper with 
remarks on future work. 

2. Genetic Programming 
In GP, a computer program is often represented as a 

tree (a program tree)’ where the internal nodes correspond 
to a set of functions used in the program and the external 
nodes (terminals) indicate variables and constants used as 
the input to functions. For a given problem, GP starts with 
an initial population p of randomly generated computer 
programs. The evolution process of generating a final 
computer program that solves the given problem is 
defined in the following prototypical algorithm: 

Define: 
f :  a fitness function that yields an evaluation score 

for a computer program ,D E p;  
5:  a fitness threshold used as a terminating 

condition; 
6: the size of p;  

the fraction of &I to be ireplaced by crossover at 
each generation; 

’ The term “tree” is used to refer to a LISP style program 
throughout the remainder of t’he paper. 
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p: the mutation rate; 
h: the limit used as an alternative terminating condition 

and L?L indicates that limit is not reached2. 
The algorithm GP is then given as follows: 

Step 1: Initialize population: p t I9 randomly generated 

Step 2: Compute f@) for all p E p; 
Step 3: While ((max((f@) Ip E 63)) < 3) A ( L A ) )  do 
Produce a new generation of computer programs p’ 

Wf, 3, 6, r, p, v 
computer programs (trees); 

Select probabilistically (1  - Y )p members of p to 
be included in p’. The probability Pr@) of selecting p 
E p is defined as follows: 

Select probabilistically (YI9 /2) pairs of programs from 
p according to Pr@) above. For each tree in a pair, a 
crossover point is randomly chosen and two offspring 
(trees) are produced from the pair in terms of the 
crossover operation and are placed into p’. 
Choose p percent of the trees from p’ with uniform 
probability. For each, a mutation operation is 
performed. 
Update p with @‘ ( p  t p’). 
ComDute f ( p )  for all p E ,@. . I - .  . -  

Step 4: Return the program tree p E p such that f@) is 
the maximal. 0 

There are a number of issues to be considered in a GP 
system: 
(1) Definitions of functions and terminals to be used in 

the program trees generated. 
(2) Definition of a fitness function for evaluating 

program trees and the way those trees are evaluated. 
(3) Generation of the initial population. 
(4) Selection strategies for trees to be included in a next 

generation population. 
(5) How crossover and mutation operations are carried 

out and how often these operations are performed. 
(6) Criteria for terminating the evolution process and the 

way to check if the terminating conditions are 
satisfied. 

(7) Return of the final results. 

3. GAPS 
The most important difference between GAPS and the 

other systems we have examined is that GAPS is a 

complete GP environment. The other systems might be 
more correctly characterized as tool kits for creating 
programs to solve a specific problem. In order to make use 
of these systems, the user must have available the tools for 
creating programs in whatever source language that the 
system was written in, whether that be LISP, C ,  C++, or 
any of the other languages used in genetic programming. 

To work in a specific problem domain, the current 
technique is: 

Write modules that will input the parameters to the 
problem, evaluate trees with regard to the problem 
domain, and handle any sort of output required during 
the run. 
Compile these modules. 
Link the modules with the supplied system modules. 
Execute the resulting program. 

With its integrated language, GAPS is wholly self- 
contained. For a given problem, a problem specification 
(PS) file3 is created that specifies the nature of the 
problem at hand as well as certain conditions for the 
evolution process. To attack different problems, all that is 
needed is to run the same GP engine with different PS 
files. 

3.1. The GAPS language 
There are three types of statements, functions, and 

commands in the language. 
Meta Statements. These are used to direct the system in 

how to execute the run, and what data structures (seed 
trees, test sets, shell tree, miscellaneous parameters) to 
create and use during the run. The setting of the control 
parameters is handled through the meta statements. 

Tree Functions. These are the actual executable 
instructions. They are all fairly standard computer 
instructions, and can be put together in a list structure to 
represent trees. Each one takes as input a specified 
number of values of specified or variable data types and 
returns a value of a specific data type. 

Shelf Commands. A GAPS shell is simply a special case 
of the general tree. The shell is responsible for evaluating 
the generated trees, feeding them any required inputs, and 
returning a meaningful fitness measure back to the GAPS 
system. Shell commands are similar to the tree functions, 
but their use is generally restricted to the job of setting up 
and evaluating the runs of individual trees. These 
commands make the job of tree evaluation, data 
initialization, etc., simpler. While the shell commands are 
designed for use only by the shell program, they can be 
used in generated trees by creating user-defined functions 
that call these commands. 

All of these statements/functions/commands are 
contained in a text file (PS files). They can be generated 
either interactively within GAPS, or independently from 

The limit here may be defined in terms of either time or 
resources consumed during the evolution process, or both. This is a text file with the file extension of .GAP. 
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GAPS, or a combination of both. All of the files that 
GAPS uses are intentionally text files. This enables a user 
to see exactly all of the relevant information on the run 
that a file sets up. It also makes it possible for the output 
file from a run to be edited and fed back into GAPS for a 
modified run or to be able to suspend a run and then pick 
up where the run had left off. 

3.2. Fitness function and tree evaluation 
The fitness function describes the criterion for ranking 

trees. It also serves as the basis for probabilistically 
selecting trees for inclusion in the next generation 
population. It can be defined based on the user provided 
test sets for the target program. These test sets would 
consist of the input data for the program and the expected 
corresponding output4. Thus the fitness of a tree f@) for p 
E ,$I boils down to the accuracy of p over the test sets. 

To evaluate the fitness of trees in the current 
population, GAPS uses its own language to define an 
evaluation program. There are a number of advantages. 
First, the system is complete unto itself and does not 
require additional tools such as interpreters or language 
systems in order to work in new domains. Second, special 
purpose tools for performing fitness evaluations can be 
built into the language, making it simpler to do the 
evaluation. 

3.3. Initial population generation 
Once the size of the initial population is defined, the 

main task is to create enough trees to fill out the 
population. If any “seed” trees are specified in the PS file, 
these are used first, and are simply created directly from 
the descriptions supplied in the PS file. When there are no 
more seed trees, trees are created randomly, using the 
terminals and functions specified in the PS file as being 
permissible. After each tree is created, it  is added to the 
initial population and then evaluated. 

GAPS implements several standard methods for 
creating the initial population of program trees. The full 
method creates only fully populated trees. That is, every 
branch will end at the same level. Until this “maximum 
depth” is reached, only functions are chosen to be added 
to the tree. At the maximum depth, only terminals are 
chosen. The grow method creates trees that might be, but 
are not required to be fully populated. No restrictions are 
placed on the selection of functions versus terminals other 
than possibly enforcing a minimum depth, and for 
enforcing a maximum depth. The ramped half-and-half 
method combines the full and grow methods in a 506’0 
split and adds the concept of a ramp. If the ramp is, for 

Other variables, such as degree of tolerance (how far off an 
answer can be and still be considered correct), the number of 
correct answers that will be considered sufficient for accepting a 
solution, can also be used in defining the fitness function. 

instance, 3..5, equal proportions of trees will use 
maximum depths of 3,4, and 5. 

3.4. Selection strategies 
GAPS offers a number of selection strategies for use by 

the users. The first strategy is called Fitness Proportionate 
Selection (sometimes referred to as Roulette Wheel 
Selection). Trees are selected randomly, with the 
probability of p E ,$I being sellected proportional to p ’ s  
fitness f@) divided by the total fitness of the population. 
The second strategy is referred to as Tournament Selection 
in which a selection of some fixed number of candidates is 
taken randomly from the population and the individual 
with the highest fitness score within this random group is 
chosen. This process is repeated until the required 
number of individuals have been selected. The third 
strategy is Greedy Over-Selection which partitions the 
population into two groups, a relatively small group of 
“elite” scorers (typically the top 15% of the population) 
and the remainder of the population. Proportionate 
selection alternates between these two groups, with the 
proportion for the elite group ranging from 50% to 100% 
of the time. 

3.5. Genetic operations 
The two main genetic operators in GAPS are crossover 

and mutation. In the crossover operation, a pair of parent 
trees having different sizes is probabilistically selected 
from the current population based on fitness. A crossover 
point is then determined in the two trees randomly. 
Finally, subtrees rooted at the crossover points of the 
parents are swapped, generating two offspring. Crossover 
operation is the predominant operation that is often 
performed at a high probability (85% to 90%). 

In the mutation operation, a single parent tree is 
probabilistically selected from the current population 
based on fitness. A mutation point is then randomly 
determined. Finally the subtree rooted at the mutation 
point is replaced by a new sutitree that is created using the 
same random tree generation process as in the initial 
population. Mutation rate is much smaller (< 5%). 

In addition to crossover and mutation, there are some 
other operations that have been found to be useful in 
GAPS [ 1 11.  

3.6. Terminating condition 
In a genetic programming system, a set number of 

generations is generally used as the condition for 
terminating the evolution process. GAPS uses a more 
flexible system. As long as iimprovements continue to be 
made, the run continues. This prevents either the 
premature termination of avenues of search that continues 
to pay off, or continuing to search dead-ends when no 
further progress seems likely. A maximum number of 
unproductive generations is the primary criterion used to 
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halt a run in GAPS rather than a limit on the total number 
of generations. This eliminates a reliance on a priori 
assumptions regarding the run and instead uses the results 
themselves to guide the run. 

Specifically, as each new tree is created in GAPS, it  is 
evaluated. During each generation in which no 
improvement in the top score occurs, a counter is 
incremented. When this counter reaches a user-defined 
threshold, the run is signaled to shut down. Before 
termination occurs, two things could happen. First, a 
temporary boost in the mutation rate could be triggered, in 
the hopes of shaking things up enough to get progress 
going again. Second, the scoring strategy could be altered, 
favoring smaller trees. This latter effect is useful for 
getting more generalized solutions to the given problem 
and for weeding out “deadwood” - branches that do not 
actually contribute to the problem solution. 

In GAPS, there are two user-defined parameters 
MaxGens and ExtraGens, and two run-time variables 
Ungroduct iveGens and SHRINK. The initial values 
for UngroductiveGens and SHRINK are 0 and off, 
respectively. Let stop be initially false, checking for the 
termination condition is captured in the following 
procedure. 
w h i l e  (not((max({f@) 1 p E $3)) >3)VStOg) do 
(Ll: carry out the evolution process (based only on 

fitness consideration); 
i f  (there is no improvement in current generation) 
then(UngroductiveGens++; 
i f  (UngroductiveGens==MaxGens) 
then ( SHRINK = “on”; 

else goto L1; 
L2: carry out the evolution process (based on both 

UnproductiveGens = 0; ] 

fitness and tree sizes consideration) 
i f  (there is improvement in current generation) 
then ( SHRINK = “off’; 

UngroductiveGens = 0; ) 
else (UngroductiveGens = 

UngroductiveGens + 1; 
if (UngroductiveGens==ExtraGens) 
then ( stop = true;) 
else goto L 2 ; ) ) )  

If the user elects to cancel a run, an option is presented 
to save all of the trees from the final generation. This 
allows the run to be resumed later where it left off. 

3.7. Result return 

In general, the final result of a GP run is considered to 
be the top scoring individual from the final generation. 
GAPS extends this with a structure called honor roll, 
which contains the top scorers from all generations of the 
run. The size of the honor roll is user-definable, with a 
minimum size of one. Even with this minimum size, the 

honor roll provides a better result return mechanism than 
the standard method. Because in the standard method, 
there is no guarantee that the best individual in a run will 
be found in the final generation, but it is guaranteed that 
the best individual from a run will be found at the top of 
the honor roll. 

The advantage of larger honor roll sizes is that in trying 
to solve a particular problem, a human can often see 
advantages to various individuals that were not the highest 
scorers. The human can then manually combine features 
of various high scoring individuals, or can use these high 
scoring individuals as seeds for a new run. It can also be 
beneficial to combine the honor rolls from multiple runs to 
seed a new run, giving the benefit of traits evolved in 
different evolutionary pathways in different runs. 

The honor roll is printed in descending order of fitness 
scores. Each member of the honor roll contains the 
following information: 

The numerical index of the tree. This provides 
information on how long it took to evolve this 
particular tree. 
The fitness score of the tree. 
The size of the tree. 
The tree itself, in list notation. 

GAPS produces a log file at the end of the run. The log 
file can include various types of information. At a 
minimum, it will include a copy of the PS file, progress 
summaries for each generation, and a listing of the honor 
roll at completion of the run. TO change the amount of 
information provided, several “diagnostic levels” can be 
specified in the PS file. The commands and their 
associated information are: 

Print-Trees: Amount of information to be printed for 
each generated tree. 
Print-Generations: Amount of summary information 
for each completed generation. 
Print-Deletions: Amount of information to be printed 
regarding deleted trees. 
Print-Tests: Level of tracing to be done during the 
evaluation of each tree. 

In all cases, a numeric parameter ranging from 0 for no 
information, to 5 for maximum information, must be 
provided. 

The log file can be very useful for generating input files 
for new runs. If a run was cut short, the population at that 
time, or the honor roll at that time could be used as seed 
trees when restarting the run later. Or the honor rolls from 
several runs could be combined in a new run to get the 
benefits of separate evolutionary pathways being 
combined. And of course the log can be useful in 
understanding just how a resulting tree was arrived at. 

3.8. How GAPS operates 
GAPS can be used in three different modes: 
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Interactive Mode. In the interactive mode, a PS file 
can be either created using built-in editing functions, 
or read from disk and then modified and saved to 
disk. Files can be executed, generating populations of 
trees that are then evolved in an effort to solve the 
defined problem. An initial PS file to be opened can 
be specified on the command line. 
Pseudo-batch Mode. In pseudo-batch mode, the 
editing functions are not used, and the PS files are 
opened and executed from within the GAPS 
environment. 
True batch mode. In true batch mode, a file 
containing the names of PS files to be run is specified 
on the command line and the GAPS environment is 
never accessed. 

GAPS uses a fairly standard Windows interface, so that 
anyone having experience with other Windows programs 
should be able to use GAPS. 

The basic sequence of events when running in the 
GAPS environment is: 
(1) Open a PS file if one has previously been created. 
(2) Edit the file to customize it to the particular problem 

at hand. 
(3) Save the file with the changes. 
(4) Run the GP engine with the file. 

In the pull-down menu of Edit, a user may edit any of 
the following items in either a PS file or the system 
environment parameters for the run: 
0 Test sets (to be used for fitness evaluation of 

generated trees). 
Seed trees (to be included as part of the initial 
population for the evolution process). 
User defined functions (to be used in generated trees). 
Built-in functions (to be used in generated trees). 
Shell tree (to define how to carry out the fitness 
evaluation). 
Target tree (to define what the target tree looks like). 
Miscellaneous parameters (parameters for the 
evolution run). 

Any of the tree functions defined in the GAPS language 
can be used as part of the target trees generated. Changing 
the built-in functions used in the evolution run would 
result in different trees being created. 

When “Run” is selected from the GAPS main window, 
a whole sequence of events occurs. It starts with 
verification of the control parameter values that were 
supplied in the PS file or via the editing functions. Once 
this is done, several run-time variables are initialized. This 
includes setting a pointer to the first test set if test sets are 
being used, clearing out any existing trees, and zeroing out 
the generation count. Then the actual work begins. 

While the run is occurring, a dialog box is displayed to 
keep the user apprised of the progress of the run. Included 
in the dialog are: 

The number of the current tree. 

e 

The number of the current generation. 
The number of generations that have passed with no 
improvement and the maximum number of 
generations with no improvement allowed. 
The average and best fitness so far. 
The average and best number of “hits” so far. 
Buttons to either pause the nun or end it immediately. 

Watching the numbers in the dialog box can give you 
an interesting view into the dynamics of evolution, the 
best scores varying between short spurts of sudden 
progress and relatively long periods of apparent 
equilibrium. 

Finally, when the run finishes, GAPS outputs the 
following information in a window, in addition to creating 
the log file: 

Total number of generations created in the evolution 
run. 

0 Total number of trees generated. 
The best fitness score. 
The finish time. 

4. Performance 
GAPS is developed in the windows environment using 

C++. It has been found to be ;in effective G P  system for a 
number of different categories of problems such as 
sequence induction, symbolic regression, pattern 
recognition, optimal control, automatic programming, and 
many others. Due to space limit, we only briefly mention 
the result of an example run for the sequence induction 
problem as follows. 

The log file contains various information as promised. 
The lines before END-DATA are essentially a copy of the 
PS file for the given problem. The entire run results in 490 
trees being created in 14 generations. The honor roll 
contains the top ten scorers from all generations. It was 
not until the 469* tree that a perfect score was achieved 
and the correct program was determined. 

5. Conclusion 
GAPS does indeed seemi to be a viable way to work 

with the GP paradigm. The ability to change problem 
domains quickly and easily through the GAPS language 
seems to have been achieved. The GAPS language is a 
complete one, including all the basic computer constructs 
such as selection, iteration, sequential execution, and even 
recursion. Extensions to the language can be added fairly 
easily, either by an end user adding new keywords along 
with the trees to implement those keywords, or by a 
programmer adding functionality for new keywords to a 
few well confined areas of the GAPS computer code. The 
system is written in an object-oriented fashion to make 
changes to the system relatively painless. 
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The honor roll is a useful extension to GP. It has proven 
invaluable in our work with GP. Likewise for the 
termination strategy of using continuing progress as the 
criteria rather than a set number of generations. This 
eliminates a reliance on a priori assumptions regarding the 
run and instead uses the results themselves to guide the 
run. 

Allowing trees as the means of evaluating other trees 
does make it much easier to jump between different 
problem domains, only requiring one executable program 
to be used for solving any GP problem. 

Future work and enhancements to GAPS can be 
pursued in the following directions: 

Conversion routines for automatically creating 
program code in C, C++, or Java from successful 
trees. This would be extremely useful for making GP 
a truly useful tool for creating solutions that can then 
be immediately put into standard computer programs. 
Multiple populations. Currently the groundwork is in 
place for creating and working with multiple 
populations in GAPS. Very little more work would be 
required to allow this. However, some of the benefits 
of multiple populations, such as independent 
evolutionary pathways, already exist in GAPS 
through the honor roll and the ability to mix 
populations from various runs into a new run. 
Competitive game playing. Here too, the groundwork 
is in place to allow trees to compete against each 
other to generate optimal competitive strategies. 
When multiple populations have been implemented, 
the GAPS language will easily support evaluating 
trees from different populations for purposes of head- 
to-head competition. 
Faster tree evaluation. There has been much work 
done in the field of optimizing tree evaluation, and 
more work still to be done. Of course the faster that 
trees can be evaluated, the more useful and the more 
powerful GP becomes. 
Multiple data types. GAPS can theoretically support 
multiple data types. All that is really needed is code to 
enforce that crossover only occurs at appropriate 
locations so that closure is not compromised. 
ADF. ADF’s, or automatically defined functions, are 
a method for increasing the power of GP by providing 
a mechanism for creating subroutines within a tree. 
This would be another useful addition to GAPS. 
Age-based death. One of the primary facets of 
biological genetics that is not mirrored in GAPS (or 
in other GP systems that we have seen) is age-based 
death. With the honor roll preventing the total loss of 
exceptional genetic specimens, this might be a useful 
addition to the GP repertoire. It would be interesting 
to see the effects this has on the speed of evolutionary 
progress. 
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Evolutionary throwbacks from the honor roll. With 
the honor roll, high scoring individuals could be 
randomly put back into the population some time 
after they had been removed. This would also be an 
interesting area to study for its effects on evolutionary 
progress. 
More extensive inpudoutput facilities in the GAPS 
language. One of its major shortcomings as a 
complete language is the limited U0 capabilities. 
Further work in this area, along with increases in the 
speed of tree evaluation, would eliminate most of the 
reasons for wanting to use the standard genetic 
programming method of recompiling the entire 
system for each new problem. 
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